Gravitating magnetic monopole via the spontaneous symmetry breaking of pure R^2 gravity

Ariel Edery

Bishop's University

IARD 2020, June 1-4, 2020

Pure R^2 gravity

The action of pure R^2 gravity is given by

$$S_0 = \int d^4x \sqrt{-g} \, \alpha \, R^2 \, .$$

Recently discovered that it is

- Invariant under the transformation $g_{\mu\nu} \to \Omega^2(x) g_{\mu\nu}$, with $\Box \Omega(x) \equiv g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \Omega(x) = 0$. This was dubbed *restricted Weyl invariance*.
- Equivalent to Einstein gravity with non-zero cosmological constant and massless scalar field

Restricted Weyl symmetry

Under a Weyl transformation, $g_{\mu\nu}\to\Omega^2(x)g_{\mu\nu}$, we have the following transformations (in four spacetime dimensions)

$$\begin{split} \sqrt{|g|} &\to \Omega^4 \sqrt{|g|} \\ R &\to \Omega^{-2} \, R - 6 \, \Omega^{-3} \, \square \, \Omega \, . \end{split}$$

It follows that under a Weyl transformation we have

$$\sqrt{|g|} R^2 \to \sqrt{|g|} R^2 - \sqrt{|g|} 12 R\Omega^{-1} \square \Omega + \sqrt{|g|} 36 \Omega^{-2} (\square \Omega)^2$$
.

Invariant if $\square \Omega(x) = 0$; this is called restricted Weyl invariance.

Action for the kinetic term of a scalar field is restricted Weyl invariant

We now evaluate how the kinetic term for the scalar field transforms under a Weyl transformation.

$$\sqrt{|g|} g^{\mu\nu} \nabla_{\mu}\phi \nabla_{\nu}\phi
\rightarrow \sqrt{|g|} g^{\mu\nu} \Omega^{2} \nabla_{\mu}(\phi \Omega^{-1}) \nabla_{\nu}(\phi \Omega^{-1})
= \sqrt{|g|} \left(\nabla_{\mu}\phi \nabla^{\mu}\phi - 2\phi \Omega^{-1} \nabla_{\mu}\phi \nabla^{\mu}\Omega + \phi^{2} \Omega^{-2} \nabla_{\mu}\Omega \nabla^{\mu}\Omega \right)
= \sqrt{|g|} \left(\nabla_{\mu}\phi \nabla^{\mu}\phi - \nabla_{\mu}(\phi^{2}\nabla^{\mu}(\ln\Omega)) + \phi^{2}\nabla_{\mu}\nabla^{\mu}(\ln\Omega) + \phi^{2}\Omega^{-2}\nabla_{\mu}\Omega \nabla^{\mu}\Omega \right)
= \sqrt{|g|} \left(\nabla_{\mu}\phi \nabla^{\mu}\phi + \phi^{2}\Omega^{-1} \square \Omega - \nabla_{\mu}(\phi^{2}\nabla^{\mu}(\ln\Omega)) \right).$$
(1)

The last term is a total derivative. Therefore, the action for the kinetic term of a scalar field is invariant if $\square\Omega(x)=0$ i.e. it is restricted Weyl invariant. In particular, there is no need to add the term $\frac{1}{6}\,R\,\phi^2$ to make it restricted Weyl invariant.

Composition law of restricted Weyl transformations in four dimensions

Consider the two consecutive restricted Weyl transformations in general \emph{d} space-time dimensions

$$\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}
\tilde{g}_{\mu\nu} = \tilde{\Omega}^2 \tilde{g}_{\mu\nu} = \tilde{\Omega}^2 \Omega^2 g_{\mu\nu}$$
(2)

where $\Box \Omega = 0$ and $\tilde{\Box} \tilde{\Omega} = 0$.

In d=4 dimensions (and only d=4) one can show that $\square(\tilde{\Omega}\Omega)=0$ so that consecutive restricted Weyl transformations obey a composition law.

Restricted Weyl invariant R^2 action with Higgs field and its equivalent Einstein action

We begin with an action that includes pure R^2 gravity, a non-minimally coupled massless triplet Higgs field Φ and SU(2) non-abelian gauge fields A^i_μ :

$$S_{a} = \int d^{4}x \sqrt{-g} \left(\alpha R^{2} - \xi R |\vec{\Phi}|^{2} - D_{\mu} \vec{\Phi} D^{\mu} \vec{\Phi} - \lambda |\vec{\Phi}|^{4} + \frac{1}{4} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} \right)$$

where α , ξ and λ are free dimensionless parameters and D_{μ} is the usual covariant derivative with respect to the non-abelian gauge symmetry. The above action is restricted Weyl invariant i.e. it is invariant under the transformation

$$g_{\mu
u} o \Omega^2 g_{\mu
u} \quad , \quad ec{\Phi} o ec{\Phi}/\Omega \quad , \quad A^i_{\mu} o A^i_{\mu} \; ext{ with } \Box \Omega = 0$$

Equivalent form of the action

Introducing the auxiliary field φ , we can rewrite the above action into the equivalent form

$$S_b = \int d^4x \sqrt{-g} \left[-\alpha (c_1 \varphi + R + \frac{c_2}{\alpha} |\vec{\Phi}|^2)^2 + \alpha R^2 - \xi R |\vec{\Phi}|^2 - D_\mu \vec{\Phi} D^\mu \vec{\Phi} - \lambda |\vec{\Phi}|^4 + \frac{1}{4} \text{Tr} F_{\mu\nu} F^{\mu\nu} \right]$$

where c_1 and c_2 are arbitrary constants.

Expanding the above action we obtain

$$S_c = \int d^4x \sqrt{-g} \Big(-c_1^2 \alpha \varphi^2 - 2\alpha c_1 \varphi R - (\xi + 2c_2)R|\vec{\Phi}|^2$$
$$- D_{\mu} \vec{\Phi} D^{\mu} \vec{\Phi} - 2c_1 c_2 \varphi |\vec{\Phi}|^2 - (\alpha^{-1}c_2^2 + \lambda)|\vec{\Phi}|^4 + \frac{1}{4} \text{Tr} F_{\mu\nu} F^{\mu\nu} \Big) .$$

The above action is equivalent to the original action and is restricted Weyl invariant as long as φ transforms accordingly; it is invariant under the transformations $g_{\mu\nu}\to\Omega^2 g_{\mu\nu}$, $\varphi\to\varphi/\Omega^2$, $\vec\Phi\to\vec\Phi/\Omega$, $A^i_{\iota\iota}\to A^i_{\iota\iota}$ with

 $\square \Omega = 0$.

Conformal transformation and Einstein action

After performing the conformal (Weyl) transformation

$$g_{\mu\nu} \to \varphi^{-1} g_{\mu\nu} \quad , \quad \vec{\Phi} \to \varphi^{1/2} \vec{\Phi} \quad , \quad A^i_{\mu} \to A^i_{\mu}$$

the above action reduces to an Einstein-Hilbert action with a massive Higgs term plus other terms

$$S_{d} = \int d^{4}x \sqrt{-g} \left(-\alpha c_{1}^{2} - 2\alpha c_{1}R - D_{\mu}\vec{\Phi}D^{\mu}\vec{\Phi} - 2c_{1}c_{2}|\vec{\Phi}|^{2} - (\alpha^{-1}c_{2}^{2} + \lambda)|\vec{\Phi}|^{4} - (\xi + 2c_{2})R|\vec{\Phi}|^{2} + 3\alpha c_{1}\frac{1}{\varphi^{2}}\partial_{\mu}\varphi \partial^{\mu}\varphi + (6(\xi + 2c_{2}) - 1)\varphi^{1/2}\Box\varphi^{-1/2}|\vec{\Phi}|^{2} + \frac{1}{4}\mathrm{Tr}F_{\mu\nu}F^{\mu\nu} \right).$$

By defining $\psi=\sqrt{-3\,\alpha c_1}\ln\varphi$ the kinetic term for φ can be expressed in the canonical form $-\partial_\mu\psi\,\partial^\mu\psi$.

Spontaneous symmetry breaking

- ullet The conformal (Weyl) transformation is not valid for arphi=0 .
- The vacuum has $\varphi \neq 0$. This vacuum is not invariant under $\varphi \to \varphi/\Omega^2 \Rightarrow$ restricted Weyl symmetry is spontaneously broken. This is evident from the fact that the final action has a massive Higgs and Einstein-Hilbert term.
- \bullet The massless scalar ψ is identified as the Nambu-Goldstone boson associated with the broken symmetry.
- It is well known that in spontaneously broken theories the original symmetry is still realized as a shift symmetry of the Goldstone bosons. This is the case here. The final action is invariant under $\varphi \to \varphi/\Omega^2, \ g_{\mu\nu} \to g_{\mu\nu}, \ \vec{\Phi} \to \vec{\Phi} \ \text{with condition}$ $\square \Omega \partial_\mu (\ln \varphi) \partial^\mu \Omega = 0. \ \text{The Goldstone boson} \ \psi \ \text{therefore undergoes}$ the shift symmetry $\psi \to \psi 2\sqrt{-3 \ \alpha c_1} \ln \Omega.$

Vacuum solutions: Higgs VEV and corresponding Ricci scalar

Unbroken gauge sector

The $\vec{\Phi}=0$ vacuum with no spontaneous breaking of gauge symmetry yields a cosmological constant of $\Lambda=-c_1/4$ in the final action. The Ricci scalar is then given by

$$R=4 \Lambda=-c_1$$
.

The possible background spacetimes are then de Sitter space if $c_1 < 0$ and anti-de Sitter space for $c_1 > 0$. The constant c_1 cannot be identically zero and Minkowski space is not a valid background here. This supports black holes in either dS or AdS spacetime only and no magnetic monopoles.

Broken gauge sector

 The case with spontaneous breaking of gauge symmetry yields the vacuum solution

$$|\vec{\Phi}|^2 = \frac{-\alpha c_1 \xi}{\xi c_2 - 2\alpha \lambda}$$
; $R = \frac{2\alpha c_1 \lambda}{\xi c_2 - 2\alpha \lambda}$.

- The VEV of $\vec{\Phi}$ breaks the SU(2) gauge symmetry down to U(1), and this breaking pattern leads to the existence of the monopole.
- A crucial point is that when $\lambda=0$, we obtain an R=0 vacuum corresponding to a Minkowski background with $|\vec{\Phi}|^2=\frac{-\alpha \, c_1}{c_2}$ where positivity implies $c_2>0$. In contrast to the Minkowski background solution that exists in the original action with $\vec{\Phi}=0$, the $\vec{\Phi}\neq 0$ Minkowski solution is a perfectly viable background and we know linearizations lead to gravitational waves since it is nothing other than the Minkowski space of Einstein gravity.

Equations of motion for static spherical symmetry: magnetic monopole solutions

We now look for static spherically symmetric solutions. We set $\varphi=1$. The ansatz for the metric is

$$ds^{2} = -B(r)dt^{2} + \frac{dr^{2}}{A(r)} + r^{2}d\theta^{2} + r^{2}\sin(\theta)^{2}d\phi^{2}.$$

Let us make the ansatz for the gauge field

$$A^{ia} = q(r)e^{aik}x^k$$

and the Higgs field

$$\vec{\Phi} = f(r) \frac{\vec{X}}{r}$$
.

Defining

$$1 + r^2 q(r) = a(r)$$

we obtain the following Einstein-Yang-Mills-Higgs (EYMH) action

EYMH action with non-minimal coupling

$$S = \int d^{4}x \sqrt{-g} (\tilde{\Lambda} + \tilde{\alpha}R - \tilde{\xi}R\vec{\Phi}^{2} - D_{\mu}\vec{\Phi}D^{\mu}\vec{\Phi} - \tilde{m}^{2}\vec{\Phi}^{2} - \tilde{\lambda}(\vec{\Phi}^{2})^{2} - \frac{1}{4g^{2}}F_{\mu\nu}^{2}$$

$$= 4\pi \int dr dt \sqrt{B/A} r^{2} \left[\tilde{\Lambda} - \tilde{m}^{2}f^{2} - A(f')^{2} - \frac{2a^{2}f^{2}}{r^{2}} - \tilde{\lambda}f^{4} - \frac{(a^{2} - 1)^{2}}{2g^{2}r^{4}} - \frac{A(a')^{2}}{g^{2}r^{2}} + (\tilde{\alpha} - \tilde{\xi}f^{2}) \left(\frac{2}{r^{2}} - \frac{2A}{r^{2}} - \frac{2A'}{r} - \frac{2AB'}{rB} - \frac{A'B'}{2B} + \frac{A(B')^{2}}{2B^{2}} - \frac{AB''}{B} \right) \right]$$

where for convenience we introduced the new parameters

$$\tilde{\Lambda}=-\alpha c_1^2 \quad ; \quad \tilde{\alpha}=-2\alpha c_1 \quad ; \quad \tilde{\xi}=\xi+2c_2 \quad ; \quad \tilde{\textit{m}}^2=2c_1c_2 \ ; \quad \tilde{\lambda}=\lambda+c_2^2/\alpha \ .$$

EYMH magnetic monopoles: numerical solutions

We seek gravitating magnetic monopole numerical solutions to the equations of motion in flat, dS and AdS backgrounds with non-minimal coupling constant $\tilde{\xi}=1/6$. By definition, magnetic monopoles are non-singular at the origin r=0 and have a field configuration of a point-like magnetic charge at large distances. This requires in total five boundary conditions at r=0 and "infinity":

$$a(0) = 1$$
 ; $A(0) = 1$; $f(0) = 0$; $a(\infty) = 0$; $f(\infty) = 1$.

Figure: Monopole in flat background with non-minimal coupling. This case corresponds to k = 0 (where $k = -\Lambda/3$).

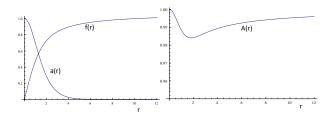


Figure: Monopole in AdS background with non-minimal coupling. The cosmological constant is chosen to be $\Lambda = -1$ (hence k = 1/3).

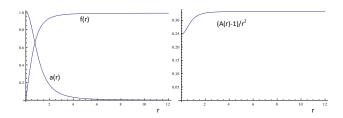
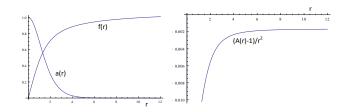


Figure: Monopole in dS background with non-minimal coupling. The cosmological constant is $\Lambda = +0.005$ (hence k = -0.001667).



Thank You